Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat.
نویسندگان
چکیده
Short-chain fatty acids (SCFAs) are recognized as the major anions of the large intestinal content in humans, but their effect on colonic motility is controversial. This study explores the colonic motor effect of SCFAs and their mechanisms in the rat. Colonic motility (electromyography) and transit time (plastic markers) were measured in conscious rats while SCFAs were infused into the colon, either alone or after administration of neural antagonists or immunoneutralization of circulating polypeptide YY (PYY). SCFA-induced PYY release was measured by RIA and then simulated by infusing exogenous PYY. Intracolonic infusion of 0.4 mmol/h SCFAs had no effect, whereas 2 mmol/h SCFAs reduced colonic motility (36 ± 3 vs. 57 ± 4 spike bursts/h with saline, P< 0.05) by decreasing the ratio of nonpropulsive to propulsive activity. This resulted in an increased transit rate ( P < 0.01). Neither α-adrenoceptor blockade nor nitric oxide synthase inhibition prevented SCFA-induced motility reduction. Intraluminal procaine infusion suppressed the SCFA effect, indicating that a local neural mechanism was involved. SCFA colonic infusion stimulated PYY release in blood. Immunoneutralization of circulating PYY abolished the effect of SCFAs on colonic motility, whereas exogenous PYY infusion partly reproduced this effect. SCFAs modify colonic motor patterns in the rat and increase transit rate; local nerve fibers and PYY are involved in this effect.
منابع مشابه
Ileal short-chain fatty acids inhibit gastric motility by a humoral pathway.
The aim of this study was to evaluate the nervous and humoral pathways involved in short-chain fatty acid (SCFA)-induced ileal brake in conscious pigs. The role of extrinsic ileal innervation was evaluated after SCFA infusion in innervated and denervated Babkin's ileal loops, and gastric motility was measured with strain gauges. Peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) concentration...
متن کاملShort-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats.
We studied whether physiological concentration of short-chain fatty acids (SCFAs) affects colonic transit and colonic motility in conscious rats. Intraluminal administration of SCFAs (100-200 mM) into the proximal colon significantly accelerated colonic transit. The stimulatory effect of SCFAs on colonic transit was abolished by perivagal capsaicin treatment, atropine, hexamethonium, and vagoto...
متن کاملPathways and receptors involved in peptide YY induced contraction of rat proximal colonic muscle in vitro.
BACKGROUND Peptide YY (PYY) is involved in the regulation of several gut functions, including secretion and motility. It exerts its effects through a family of six receptors, commonly named the Y receptor family. AIMS To characterise the effects of PYY on strips of rat proximal colon in vitro, and to determine the pathways and receptors involved. METHODS Contractions of strips removed from ...
متن کاملMucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon.
BACKGROUND Mucins play an important protective role in the colonic mucosa. Luminal factors modulating colonic mucus release have been not fully identified. AIM To determine the effect of some dietary compounds on mucus discharge in rat colon. METHODS An isolated vascularly perfused rat colon model was used. Mucus secretion was induced by a variety of luminal factors administered as a bolus ...
متن کاملModulation by colonic fermentation of LES function in humans.
Colonic fermentation of carbohydrate has been shown to influence gastric and intestinal motility. Our aim was to investigate the effects of colonic infusion of lactose and short-chain fatty acids (SCFAs) on lower esophageal sphincter (LES) function in humans. LES pressure (LESP), transient relaxations of LES (TLESRs), and esophageal pH were monitored over 6 h on 4 different days in 7 healthy vo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 275 6 Pt 1 شماره
صفحات -
تاریخ انتشار 1998